Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 182(6): 1490-1507.e19, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32916131

RESUMO

Metabolic reprogramming is a key feature of many cancers, but how and when it contributes to tumorigenesis remains unclear. Here we demonstrate that metabolic reprogramming induced by mitochondrial fusion can be rate-limiting for immortalization of tumor-initiating cells (TICs) and trigger their irreversible dedication to tumorigenesis. Using single-cell transcriptomics, we find that Drosophila brain tumors contain a rapidly dividing stem cell population defined by upregulation of oxidative phosphorylation (OxPhos). We combine targeted metabolomics and in vivo genetic screening to demonstrate that OxPhos is required for tumor cell immortalization but dispensable in neural stem cells (NSCs) giving rise to tumors. Employing an in vivo NADH/NAD+ sensor, we show that NSCs precisely increase OxPhos during immortalization. Blocking OxPhos or mitochondrial fusion stalls TICs in quiescence and prevents tumorigenesis through impaired NAD+ regeneration. Our work establishes a unique connection between cellular metabolism and immortalization of tumor-initiating cells.


Assuntos
Neoplasias Encefálicas/metabolismo , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Dinâmica Mitocondrial , NAD/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neurais/metabolismo , Fosforilação Oxidativa , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Carcinogênese/genética , Carcinogênese/patologia , Transformação Celular Neoplásica/patologia , Ciclo do Ácido Cítrico/genética , Biologia Computacional , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Glicólise/genética , Espectrometria de Massas , Metabolômica , Microscopia Eletrônica de Transmissão , Família Multigênica , Células-Tronco Neurais/patologia , Consumo de Oxigênio/genética , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Análise de Célula Única , Transcriptoma/genética
2.
Elife ; 72018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29580384

RESUMO

Tumor cells display features that are not found in healthy cells. How they become immortal and how their specific features can be exploited to combat tumorigenesis are key questions in tumor biology. Here we describe the long non-coding RNA cherub that is critically required for the development of brain tumors in Drosophila but is dispensable for normal development. In mitotic Drosophila neural stem cells, cherub localizes to the cell periphery and segregates into the differentiating daughter cell. During tumorigenesis, de-differentiation of cherub-high cells leads to the formation of tumorigenic stem cells that accumulate abnormally high cherub levels. We show that cherub establishes a molecular link between the RNA-binding proteins Staufen and Syncrip. As Syncrip is part of the molecular machinery specifying temporal identity in neural stem cells, we propose that tumor cells proliferate indefinitely, because cherub accumulation no longer allows them to complete their temporal neurogenesis program.


Assuntos
Neoplasias Encefálicas/patologia , Transformação Celular Neoplásica , Células-Tronco Neoplásicas/fisiologia , Células-Tronco Neurais/fisiologia , RNA Longo não Codificante/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/metabolismo , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/metabolismo
3.
EMBO Rep ; 19(1): 102-117, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191977

RESUMO

The TRIM-NHL protein Brain tumor (Brat) acts as a tumor suppressor in the Drosophila brain, but how it suppresses tumor formation is not completely understood. Here, we combine temperature-controlled brat RNAi with transcriptome analysis to identify the immediate Brat targets in Drosophila neuroblasts. Besides the known target Deadpan (Dpn), our experiments identify the transcription factor Zelda (Zld) as a critical target of Brat. Our data show that Zld is expressed in neuroblasts and required to allow re-expression of Dpn in transit-amplifying intermediate neural progenitors. Upon neuroblast division, Brat is enriched in one daughter cell where its NHL domain directly binds to specific motifs in the 3'UTR of dpn and zld mRNA to mediate their degradation. In brat mutants, both Dpn and Zld continue to be expressed, but inhibition of either transcription factor prevents tumorigenesis. Our genetic and biochemical data indicate that Dpn inhibition requires higher Brat levels than Zld inhibition and suggest a model where stepwise post-transcriptional inhibition of distinct factors ensures sequential generation of fates in a stem cell lineage.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinogênese/genética , Linhagem da Célula/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células-Tronco Neurais/metabolismo , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Sistemas CRISPR-Cas , Carcinogênese/metabolismo , Carcinogênese/patologia , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Edição de Genes , Regulação da Expressão Gênica , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Células-Tronco Neurais/patologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Proteólise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo
4.
Development ; 144(21): 3932-3945, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28935704

RESUMO

Stem cells need to balance self-renewal and differentiation for correct tissue development and homeostasis. Defects in this balance can lead to developmental defects or tumor formation. In recent years, mRNA splicing has emerged as an important mechanism regulating cell fate decisions. Here we address the role of the evolutionarily conserved splicing co-factor Barricade (Barc)/Tat-SF1/CUS2 in Drosophila neural stem cell (neuroblast) lineage formation. We show that Barc is required for the generation of neurons during Drosophila brain development by ensuring correct neural progenitor proliferation and differentiation. Barc associates with components of the U2 small nuclear ribonucleoprotein (snRNP) complex, and its depletion causes alternative splicing in the form of intron retention in a subset of genes. Using bioinformatics analysis and a cell culture-based splicing assay, we found that Barc-dependent introns share three major traits: they are short, GC rich and have weak 3' splice sites. Our results show that Barc, together with the U2 snRNP complex, plays an important role in regulating neural stem cell lineage progression during brain development and facilitates correct splicing of a subset of introns.


Assuntos
Ciclo Celular , Linhagem da Célula , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Fatores de Transcrição/metabolismo , Processamento Alternativo/genética , Animais , Composição de Bases/genética , Sequência de Bases , Padronização Corporal/genética , Encéfalo/anatomia & histologia , Contagem de Células , Proliferação de Células , Células Clonais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Técnicas de Silenciamento de Genes , Íntrons/genética , Camundongos , Modelos Biológicos , Mutação/genética , Neurônios/citologia , Neurônios/metabolismo , Fenótipo , Ligação Proteica , Interferência de RNA , Sítios de Splice de RNA/genética , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Fatores de Tempo
5.
G3 (Bethesda) ; 6(8): 2467-78, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27280787

RESUMO

Traditional loss-of-function studies in Drosophila suffer from a number of shortcomings, including off-target effects in the case of RNA interference (RNAi) or the stochastic nature of mosaic clonal analysis. Here, we describe minimal in vivo GFP interference (miGFPi) as a versatile strategy to characterize gene function and to conduct highly stringent, cell type-specific loss-of-function experiments in Drosophila miGFPi combines CRISPR/Cas9-mediated tagging of genes at their endogenous locus with an immunotag and an exogenous 21 nucleotide RNAi effector sequence with the use of a single reagent, highly validated RNAi line targeting this sequence. We demonstrate the utility and time effectiveness of this method by characterizing the function of the Polymerase I (Pol I)-associated transcription factor Tif-1a, and the previously uncharacterized gene MESR4, in the Drosophila female germline stem cell lineage. In addition, we show that miGFPi serves as a powerful technique to functionally characterize individual isoforms of a gene. We exemplify this aspect of miGFPi by studying isoform-specific loss-of-function phenotypes of the longitudinals lacking (lola) gene in neural stem cells. Altogether, the miGFPi strategy constitutes a generalized loss-of-function approach that is amenable to the study of the function of all genes in the genome in a stringent and highly time effective manner.


Assuntos
Sistemas CRISPR-Cas , Proteínas de Drosophila/genética , Drosophila/genética , Interferência de RNA , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Células Germinativas , Proteínas de Fluorescência Verde/genética , Mutação , Isoformas de Proteínas/genética , RNA Guia de Cinetoplastídeos , Proteínas Repressoras/metabolismo , Células-Tronco
6.
Cell ; 158(4): 874-888, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25126791

RESUMO

Stem cells are highly abundant during early development but become a rare population in most adult organs. The molecular mechanisms causing stem cells to exit proliferation at a specific time are not well understood. Here, we show that changes in energy metabolism induced by the steroid hormone ecdysone and the Mediator initiate an irreversible cascade of events leading to cell-cycle exit in Drosophila neural stem cells. We show that the timely induction of oxidative phosphorylation and the mitochondrial respiratory chain are required in neuroblasts to uncouple the cell cycle from cell growth. This results in a progressive reduction in neuroblast cell size and ultimately in terminal differentiation. Brain tumor mutant neuroblasts fail to undergo this shrinkage process and continue to proliferate until adulthood. Our findings show that cell size control can be modified by systemic hormonal signaling and reveal a unique connection between metabolism and proliferation in stem cells.


Assuntos
Proliferação de Células , Drosophila melanogaster/citologia , Ecdisona/metabolismo , Células-Tronco Neurais/citologia , Animais , Tamanho Celular , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Metabolismo Energético , Genoma de Inseto , Complexo Mediador/metabolismo , Células-Tronco Neurais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...